Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada

PVP20

Department of Freshman Engineering

Engineering Chemistry

Course			20BS1202 Year		I		Sem	Semester			II					
Code Course			Basic Science Branch		IT		Cou	Course Type			Theory					
Category			Basic Science Branch		11		Cou	Course Type			THEOLY					
Credits			3	3 L-T-P			3-0-0		Prer	Prerequisites			Nil			
Continuous		s	-			Semester End		70			Total			100		
Internal			20			Evaluation		, 0			Marks			100		
Evaluation		ı														
		•					Cours	se Outo	comes							
Upon	succe	essful c	ompleti	on of t	he cou	rse, the	stude	nt will	be able	to						
CO1	Uno	Understand the basic principles related to renewable energy sources, energy systems, metal finishing								1 finishing						
		mater														
CO2								the v	vorking of							
		electrodes and cells (L3)														
CO3		Apply suitable methods for metal finishing and advanced techniques for the characterization of nano									on of nano					
CO 4		naterials (L3)									1					
CO4		Analyse the performance of different electrochemical techniques, energy conversion systems, polymers and nano materials in their respective applications (L4)								, polymers						
CO5										vaios rol	ated to E	ngingor	ing ol	aomic	tex	
<u>CO3</u>	IVIa									_					uy.	
Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)																
	PO1	PO2	PO3			PO6		`	PO9			PO12	PSC	<u>)1</u>	PSO2	
CO1	101	102	103	104	103	100	107	100	10)	1010	1011	1012	150	<i>7</i> 1	1502	
CO2	3						1					1		1		
CO3	3						1					1		1		
CO4	3						1					1		1		
CO5	3						1			2		1		1		
							S	yllabu	S	1	I.	l	1		L	
Unit N	No.						Syll	abus						Maj	oped CO's	
1		ELEC	TROCI	HEMIC	CAL E	NERG'	Y SYS	TEMS							-	
											als, Meas					
Electrode Potentials, Nernst Equation for a sin																
		Types of Electrodes or Half Cells-Hydrogen and Calomel electrode, Electrochemical Cell, Galvanic Cell vs Electrolytic Cell, Electrochemical													CO1,CO2,	
										•	,			CO	04,CO5	
				• •						-	embrane	electro	ode,			
			ner men							ation Ce	11c					
2			TERY T		•		ion on	ıy <i>)</i> , CO	ncentr	ation Ce	115.					
							eristics	s class	sification	on of 1	oatteries,	Impor	tant			
			-		-						che cel	-		CO	01,CO2,	
									-		battery				04,CO5	
										-	gen and				, -	
			ropane									, ,				
3			EWABL													
	Introduction- sources of renewable energy															
		Solar energy - Introduction - Physical and Chemical properties of Silicon-					CO	1,CO2,								

Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada

PVP20

Department of Freshman Engineering

	Production of Solar Grade Silicon from Quartz - Doping of Silicon- p and n	CO4,CO5
	type semi conductors- PV cell / solar cell- Manufacturing of Photovoltaic	
	Cells using Chemical Vapor Deposition Technique-applications of solar energy	
4	METAL FINISHING	
	Technological importance of metal finishing, methods of metal finishing,	
	manufacturing of electronic components, electrochemical techniques of forming,	CO1,CO3,
	machining and etching, electrolytic cell, principle of electroplating, nature of	CO4,CO5
	electrodeposits, electroplating process, Electroplating of chromium, gold etc.	
	Electroless plating of copper, nickel	
5	POLYMERS & NANOMATERIALS	
	Polymers: Introduction thermoplastic and thermo setting resins, Preparation,	
	properties and uses of polystyrene and Polyphosphazines., differences between	
	Nanomaterials: Introduction to nanomaterial: nanoparticles, nanocluster, carbon	
	nanotube (CNT) and nanowires. Chemical synthesis of nanomaterials: sol-gel	
	method. Characterization: Principle and applications of scanning electron	CO1,CO3,
	microscope (SEM) and transmission electron microscope (TEM).	CO4,CO5
		23.,300

Learning Resources

Text Books

- 1. P.C. Jain and M. Jain, Engineering Chemistry, 15/e, DhanapatRai& Sons, Delhi (2014).
- 2. B.K. Sharma, Engineering Chemistry, Krishna Prakashan, Meerut.
- 3. O G Palanna, Engineering Chemistry, Tata McGraw Hill (2009).

Reference Books

- 1. Sashichawla, A Textbook of Engineering Chemistry, DhanapathRai and sons, (2003)
- 2. B.S Murthy and P. Shankar, A Text Book of NanoScience and NanoTechnology, University Press (2013).
- 3. S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010)
- 4. N.Krishna Murthy and Anuradha, A text book of Engineering Chemistry, M murthyPublications (2014).
- 5. K. SeshaMaheshwaramma and Mridula Chugh, Engineering Chemistry, Pearson India Edn services, (2016).

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/105105178/
- 2. http://202.53.81.118/course/view.php?id=82